Title: METHOD FOR CALCULATION OF LIMITS ON EXTERNAL MOMENTS OF INERTIA ATTACHED TO ACTUATOR SHAFTS

Time for 90° travel = T (sec.) Moment of Inertia = I (kg m²) (for a mass M (kg) at radius R (m): $I = MR^2$)

MAX. MOMENT OF INERTIA
HITTING ACTUATOR STOPS
(kg m²)
$I = 0.004 T^2$
$I = 0.015 T^2$
$I = 0.033 T^2$
$I = 0.07 T^2$
$I = 0.13 T^2$
$I = 0.33 T^2$
$I = 0.50 \text{ T}^2$
$I = 0.71 T^2$
$I = 1.0 T^2$
$I = 1.55 T^2$
$I = 4.0 T^2$
$I = 6.0 T^2$
$I = 8.0 T^2$
$I = 12.0 T^2$
$I = 12.0 T^2$
$I = 12.0 \text{ T}^2$

NOTE: 1. These figures are for guidance only.

2. If the moments of inertia given by the above formulae are exceeded, the actuator end stops must <u>NOT</u> be used to arrest movement of the load.

Issue	Signed	Date	ิ IK II NI โร๊ "II" โห่((เ))II₀ Trading Estate Farnham Surrey England⊢	Doc.No. TD37
D	D.G.W.	14-12-17		Page 1 of 1